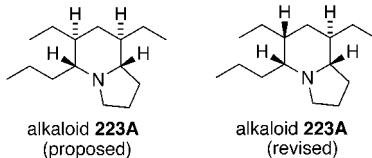


Synthesis of Alkaloid 223A and a Structural Revision

Naoki Toyooka,* Ayako Fukutome, and Hideo Nemoto*

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University,
Sugitani 2630, Toyama 930-0194, Japan


John W. Daly, Thomas F. Spande, H. Martin Garraffo, and Tetsuo Kaneko

Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and
Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

toyooka@ms.toyama-mpu.ac.jp

Received February 25, 2002

ABSTRACT

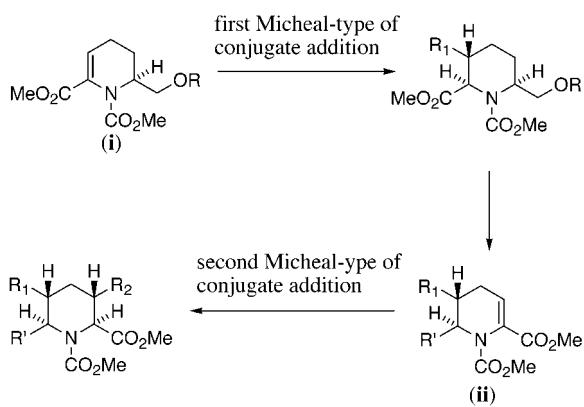
Synthesis of alkaloid 223A has been achieved by sequential use of our original conjugate addition reaction to enaminoesters as the key step. The proposed structure for natural 223A (A, absolute configuration unknown) was revised to B, and the relative stereostructure was determined to be *5R*,6R*,8R*,9S** by the present synthesis.

Amphibian skin has provided a wide range of biologically active alkaloids (over 20 structural classes and over 500 alkaloids) including pyrrolidines, piperidines, decahydro-quinolines, pyrrolizidines, indolizidines, and quinolizidines.¹ The pharmacological activities associated with these alkaloids together with the small amounts isolated from skins have inspired many syntheses of these heterocycles.² The alkaloid 223A (A), the first member of a new trialkyl-substituted indolizidine class of amphibian alkaloids, was isolated from a skin extract of a Panamanian population of the frog

Dendrobates pumilio Schmidt (Dendrobatidae) in 1997 along with three higher homologues of A.³ The structure of this alkaloid has been established to be A based upon GC-MS, GC-FTIR, and ¹H NMR spectral studies.³ In this paper, we would like to report the first synthesis of alkaloid 223A by sequential use of our original Michael-type of conjugate addition reaction to enaminoesters (i, ii) as the key step⁴ (Figure 1). The proposed configuration at the 6-position of 223A was found to be incorrect. The correct structure was proved by work reported here.

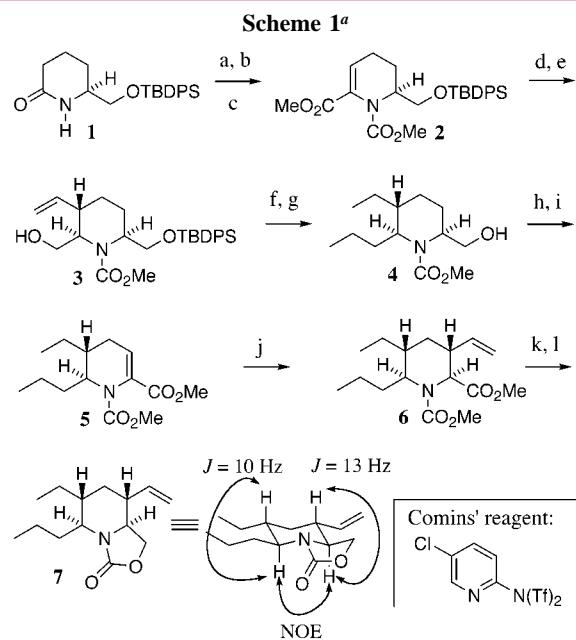
The synthesis began with (2S)-amide 1,⁵ which was converted to the cyclic enaminoester 2 using triflation of the intermediate imidouethane with Comins' reagent⁶ followed by a palladium-catalyzed CO insertion reaction⁷ of the

(1) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; Pergamon Press: New York, 1999; Vol. 13, pp 1–161. Daly, J. W. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol. 50, pp 141–169.
(2) Davis, F. A.; Chao, B.; Rao, A. *Org. Lett.* **2001**, *3*, 3169–3171. Kim, G.; Jung, S.; Kim, W.-J. *Org. Lett.* **2001**, *3*, 2985–2987. Tan, C.-H.; Holmes, A. B. *Chem. Eur. J.* **2001**, *7*, 1845–1854. Comins, D. L.; Huang, S.; McArdle, C. L.; Ingalls, C. L. *Org. Lett.* **2001**, *3*, 469–471. Wei, L.-L.; Hsung, R. P.; Sklenicka, H. M.; Gerasyuto, A. I. *Angew. Chem., Int. Ed.* **2001**, *40*, 1516–1518. Enders, D.; Thiebes, C. *Synlett* **2000**, 1745–1748. Michel, P.; Rassat, A.; Daly, J. W.; Spande, T. F. *J. Org. Chem.* **2000**, *65*, 8908–8918. Williams, G. M.; Roughley, S. D.; Davies, J. D.; Holmes, A. B.; Adams, J. P. *J. Am. Chem. Soc.* **1999**, *121*, 4900–4901. Pearson, W. H.; Suga, H. *J. Org. Chem.* **1998**, *63*, 9910–9918. Comins, D. L.; LaMunyon, D. H.; Chen, X. H. *J. Org. Chem.* **1997**, *62*, 8182–8187 and references therein.


(3) Garraffo, H. M.; Jain, P.; Spande, T. F.; Daly, J. W. *J. Nat. Prod.* **1997**, *60*, 2–5.

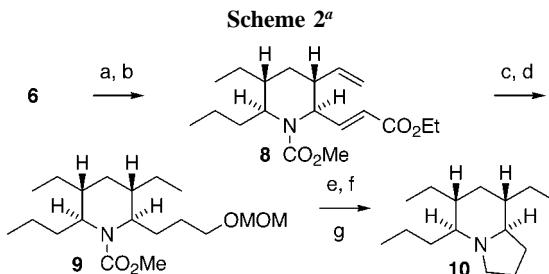
(4) Momose, T.; Toyooka, N. *J. Org. Chem.* **1994**, *59*, 943–945. Toyooka, N.; Tanaka, K.; Momose, T.; Daly, J. W.; Garraffo, H. M. *Tetrahedron* **1997**, *53*, 9553–9574.

(5) Hodgkinson, T. J.; Shipman, M. *Synthesis* **1998**, 1141–1144.


(6) Comins, D. L.; Dehghani, A. *Tetrahedron Lett.* **1992**, *33*, 6299–6302.

(7) Cacchi, S.; Morera, E.; Orter, G. *Tetrahedron Lett.* **1985**, *26*, 1109–1112.

Figure 1. Basic strategy for the construction of the 2,3,5,6-tetrasubstituted piperidine ring system.


resulting enol triflate. The first Michael-type conjugate addition of **2** proceeded smoothly giving the vinyl adduct as a single isomer,⁴ which was transformed into the methyl urethane **4** via the alcohol **3**. The alcohol **4** was converted to the methyl ester, which was transformed into the cyclic enaminoester **5** using Rubio's protocol.⁸ The second Michael-type conjugate addition of **5** proceeded to afford adduct **6**, again as a single isomer. The stereochemistry of **6** was determined by the coupling constants and NOE of the oxazolizinone derivative **7** as shown in Scheme 1.

^a Reagents and conditions: (a) *n*-BuLi, ClCO₂Me (98%); (b) LiHMDS, Comins' reagent (96%); (c) CO, Pd(Ph₃P)₄, Et₃N, MeOH (88%); (d) (vinyl)₂CuLi (96%); (e) Super-Hydride (96%); (f) Swern ox., then *n*-BuLi, EtP⁺Ph₃Br⁻ (79% 2 steps); (g) 5% Pd-C, H₂, then TBAF (77% 2 steps); (h) Swern oxidation, then NaClO₂, NaH₂PO₄, and then CH₂N₂ (90% 3 steps); (i) LiHMDS, PhSeCl (77%); (j) (vinyl)₂CuLi (90%); (k) Super-Hydride (99%); (l) NaH (84%). TBDPS = *tert*-butyldiphenylsilyl.

The stereoselectivity of the second and key Michael-type conjugate addition can be rationalized as follows. The conformation of **5** will be restricted to **5-A** as a result of A^(1,3) strain⁹ between the *N*-methoxycarbonyl and *n*-propyl groups in **5-B**. Attack of the vinyl anion from the stereo-electronically favored α -axial direction provides the adduct **6** exclusively.

It is noteworthy that the stereochemical course of the above reaction is controlled by the stereoelectronic effect despite severe 1,3-diaxial steric repulsion between the axial ethyl group at the 5-position and the incoming vinyl anion. This remarkable stereoselectivity can be also explained by Cieplak's hypothesis.¹⁰ On the preferred conformation **5-A**, the developing σ^* of the transition state is stabilized by the anti-periplanar donor σ_{C-H} at the C-4 position. Elaboration of the adduct **6** into the indolizidine **10**, previously proposed as the structure for natural **223A**,³ is shown in Scheme 2.

^a Reagents and conditions: (a) Super-Hydride (99%); (b) Swern oxidation, then NaH, (EtO)₂P(O)CH₂CO₂Et (96% 2 steps); (c) 5% Pd-C, H₂ then Super-Hydride (89% 2 steps); (d) MOMCl, Hünig base (86%); (e) *n*-PrSLi, HMPA; (f) c. HCl, MeOH; (g) CBr₄, Ph₃P (52% 3 steps).

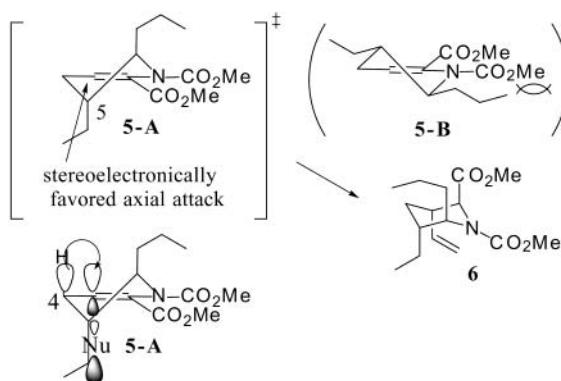
Reduction of **6** with Super-Hydride followed by Swern oxidation and Wittig–Horner reaction of the resulting aldehyde afforded the α,β -unsaturated ester **8**. Hydrogenation of **8** and reduction of the resulting saturated ester gave the corresponding alcohol, whose hydroxyl group was protected as the MOM ether **9**. Finally, deprotection¹¹ of the methoxycarbonyl group and cleavage of the MOM ether followed by indolizidine formation¹² furnished **10**. However the ¹H and ¹³C NMR and IR spectra of **10** were not identical with those for the natural product, nor was the GC retention time.

The close similarity of the Bohlmann bands in the vapor phase FTIR spectra of **10** and natural **223A** indicated the same 5,9-Z configuration³ for both compounds. On the basis of a detailed comparison of the ¹H and ¹³C NMR spectra,¹³ we concluded that natural **223A** differed from **10** only in the 6-position configuration. Therefore, we commenced the

(8) Ezquerra, J.; Escribano, A.; Rubio, A.; Remuñan, M. J.; Vaquero, J. J. *Tetrahedron: Asymmetry* **1996**, *7*, 2613–2626.

(9) Hoffmann, R. W. *Chem. Rev.* **1989**, *89*, 1841–1873.

(10) Cieplak, A. S. *J. Am. Chem. Soc.* **1981**, *103*, 4540–4552.


(11) Corey, E. J.; Yuen, P. *Tetrahedron Lett.* **1989**, *30*, 5825–5828.

(12) Shishido, Y.; Kibayashi, C. *J. Org. Chem.* **1992**, *57*, 2876–2882.

(13) H-5 in **10** and **223A** was a di signal with *J* values of 11, 2.5 and 11, 4.7 Hz, respectively. Hindered rotation at C-5 in **223A** leads to an 11-Hz *J*_{5–10} coupling and does not reflect the *J*_{5–6} coupling as was erroneously proposed initially.³

synthesis of the diastereomeric indolizidine **11** from piperidone **12**.¹⁴

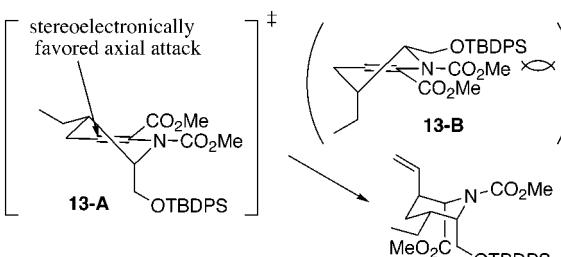
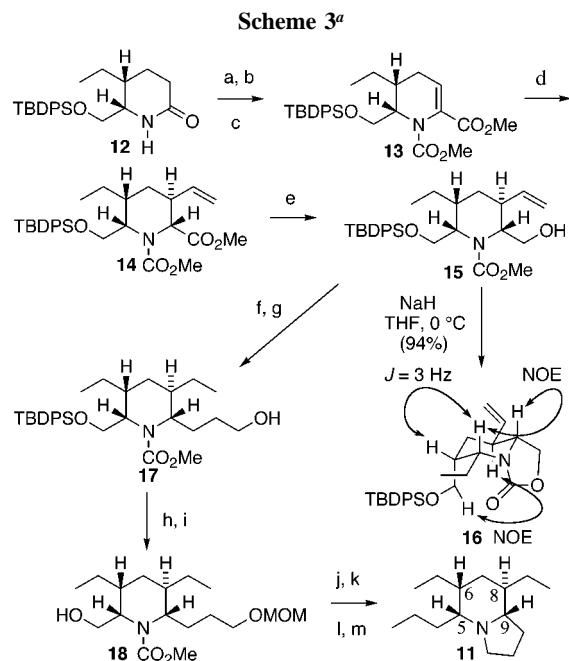

The piperidone **12** was converted to cyclic enaminoester **13** in the same manner as described in Scheme 1. Addition of divinylcuprate to **13** provided the adduct **14** as a single isomer in excellent yield. The indicated coupling constant and NOE experiments of oxazolizinone **16** derived from **14** via the alcohol **15** confirmed that the stereogenic centers of the key intermediate **14** were correct for the synthesis of the target indolizidine **11**. Stereoselectivity of this Michael reaction can again be explained by A^(1,3) strain and a stereoelectronic effect as shown in Figure 2. The synthesis

Figure 2. Stereochemical course of the key Michael-type conjugate addition reaction of **5**.


of **11** was accomplished via the alcohols **17** and **18** in the same manner as used in the synthesis of **10** in Scheme 2. The spectral data for **11** (¹H and ¹³C NMR, GC-FTIR, GC-EIMS) were completely identical with those for the natural product. Thus the structure of natural **223A** is revised to **11**, and the relative stereostructure of this alkaloid was determined to be *5R*,6R*,8R*,9S**¹⁵ by the present synthesis.

In summary, the first synthesis of alkaloid **223A** has been accomplished, the proposed structure has been revised, and the relative stereostructure of natural **223A** was determined. In the key Michael-type conjugate addition reaction, allylic 1,3-strain effectively restricts the addition to one conformation of the enaminoester, where a stereoelectronic effect

Figure 3. Stereochemical course of the key Michael-type conjugate addition reaction of **15**.

Scheme 3^a

^a Reagents and conditions: (a) *n*-BuLi, ClCO₂Me (97%); (b) LiHMDS, Comins' reagent (97%); (c) CO, Pd(Ph₃P)₄, Et₃N, MeOH (75%); (d) (vinyl)CuLi (95%); (e) Super-Hydride (96%); (f) Swern oxidation, then NaH, (EtO)₂P(O)CH₂CO₂Et (92% 2 steps); (g) 5% Pd-C, H₂, then Super-Hydride (98% 2 steps); (h) MOMCl, Hünig base (89%); (i) TBAF (79%); (j) Swern oxidation, then *n*-BuLi, EtP⁺Ph₃Br⁻ (83% 2 steps); (k) 5% Pd-C, H₂; (l) *n*-PrSLi, HMPA; (m) c. HCl, MeOH, then CBr₄, Ph₃P (51% 4 steps)

confers selectivity to the addition. More importantly, any alkyl side chain could be introduced at the 3- and 5-positions by our strategy in a stereoselective manner. The carbon chain at the 2- and 6-positions can be elongated arbitrarily by appropriate modifications of oxygenated functional groups. This flexible route should be amenable to synthesis of other alkaloids such as three higher homologues of **223A** or unnatural congeners of dendrobatid alkaloids bearing highly substituted piperidine rings. Syntheses of the higher homologues of **223A**, such as **237L**, **251H**, and **267J**, are now under investigation.

Acknowledgment. We are grateful to Dr. Yoshihiko Hirose, Amano Pharmaceutical Co., Ltd., for the generous gift of lipase AK used in the synthesis of **12**.¹⁴

Supporting Information Available: Experimental procedures and characterization data for all new compounds and ¹H and ¹³C NMR spectra of synthetic compounds **6**, **7**, **10**, **11**, **14**, **16**, and natural **223A**·DCl salt. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL025775M

(14) This piperidone was synthesized from known (2*R*)-2-(hydroxymethyl)butyl acetate (Izquierdo, I.; Plaza, M. P.; Rodriguez, M.; Tamayo, J. *Tetrahedron: Asymmetry* **1999**, *10*, 449–455); see Supporting Information for the experimental details.

(15) The optical rotation of the DCl salt synthetic **11** was $[\alpha]^{26}_D = -40.9$ (*c* 0.25, CHCl₃). Although the small amount of natural **223A**·DCl available was sufficient only to indicate a very small negative rotation (observed rotation -0.01° in CHCl₃), we suggest from this that our synthetic enantiomer **11** may have the natural absolute configuration. Additional work will have to confirm this.